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Abstract

We present a progressive compression technique for vol-
umetric subdivision meshes based on the slow growing re-
finement algorithm. The system is comprised of a wavelet
transform followed by a progressive encoding of the result-
ing wavelet coefficients.

We compare the efficiency of two wavelet transforms.
The first transform is based on the smoothing rules used in
the slow growing subdivision technique. The second trans-
form is a generalization of lifted linear B-spline wavelets
to the same multi-tier refinement structure. Direct cou-
pling with a hierarchical coder produces progressive bit
streams. Rate distortion metrics are evaluated for both
wavelet transforms.

We tested the practical performance of the scheme on
synthetic data as well as data from laser indirect-drive
fusion simulations with multiple fields per vertex. Both
wavelet transforms result in high quality trade off curves
and produce qualitatively good coarse representations.

1 Introduction

The processing and representation of data on regular
grids has advanced substantially in recent years. Large scale
scientific simulation codes that generate data on regular
grids have been coupled with advanced wavelet compres-
sion systems and cache coherent streaming systems. How-
ever, a substantial amount of data is generated using finite
element or finite volume techniques that have meshes with
enhanced or reduced connectivity and with vertex positions
that change with time.

This paper presents a progressive compression frame-
work for volumetric data created by scientific simulations
that is a first step to a full progressive system for arbitrary fi-
nite element grids. Such a system involves three main tasks:

1. Mesh Remapping: an efficient and robust method of
taking arbitrary finite element meshes with associated
fields and producing a conforming mesh with subdivi-
sion connectivity.

2. Compression: compression of the data on the subdi-
vision mesh with controllable error tolerances.

3. Flexible Visualization: a visualization system that
supports view-dependent rendering to enable interac-
tive navigation of large data sets.

This paper presents a compression system for slow growing
subdivision volumes with associated field values. The slow
growing refinement rules coupled with progressive wavelet
transforms enable progressive reconstruction of scientific
data, and can be used to produce view dependent approx-
imations. The remapping algorithm used here is quite sim-
ple, and not a general solution. However, remapping al-
gorithms are still under active research, and currently no
general solution is known to the authors.

2 Previous Work

Wavelet transforms have been used to construct multires-
olution representations of scalar volume data for render-
ing and compression [8, 9, 10, 3, 4]. Wavelets have been
used to produce progressive representations [16] and time-
varying volumes [18] for volume data.

Subdivision surfaces have also been combined with
wavelet techniques to produce compressed progressive rep-
resentations. Khodakovsky [5] presented a complete system
for triangle meshes. The system used the MAPS algorithm
[6] to construct a mesh with subdivision connectivity from
unstructured mesh data. Bertram [1] generalized the lifting
scheme of Sweldons [15] to Catmull-Clark [2] surface sub-
division and applied it to isosurfaces extracted from large
scale simulation data. Valette et. al. [17] have proposed a
subdivision wavelet scheme for irregular meshes that does
not require a base mesh with subdivision connectivity. The
present work requires such a base mesh and would be diffi-
cult to extend in the same way.

Linsen [7] used a similar approach to the present paper,
generalizing B-spline wavelets to n

√
2 subdivision for reg-

ular grids. The wavelets were factorizations of the lifted
wavelets of Bertram [1] to the multi-tier refinement. The
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coefficients were thresholded and small numbers of coef-
ficients were used to produce approximations to scientific
data sets defined on regular grids.

3 Slow Growing Subdivision

The slow growing subdivision scheme [11] generalizes
to arbitrary dimension, but only the three dimensional case
is treated in this paper. This section provides a brief
overview of the technique and relevant notation.

Regarding only the connectivity of a mesh, the slow
growing refinement rules for volumes are a factorization
of the Catmull-Clark refinement rules [2] into three distinct
steps. These steps are referred to as tiers, and labeled from 0
to 3. The subdivision is indexed by the level � and tier with
(�,3) equivalent to (�+ 1,0). In the remainder of this sec-
tion, mesh elements will be described by the tier at which
they exist. Thus, "tier 0" faces, means the faces of the mesh
the exist at tier 0. As will be seen below, the connectivity of
the mesh changes from tier to tier, making such distinctions
necessary.

3.1 Refinement Rules for Connectivity

(a) (b)

Figure 1. Cell refinement from tier 0 to tier
1. (a) Two cells in tier 0 with common face
shaded gray. Their centers are marked with
two crosses. (b) The new cell of tier 1 (in gray)
is the union of the pyramids defined by con-
necting the tier 0 cell centers to the vertices of
the tier 0 cells. The common face is removed
from the mesh.

Figure 1 shows the construction of tier 1 cells from tier
0 cells. A vertex is inserted within each tier 0 cell. This
vertex is connected to each vertex of the cell, forming a set
of pyramids. Two such pyramids are shown in figure 1b.
Pairs of pyramids sharing faces of tier 0 cells are merged to
form tier 1 cells. The shared tier 0 faces are then removed
from the mesh. The faces of the mesh can be tagged as
features, which causes them to remain in the mesh. It also
causes any subdivision rules applied to the face to utilize
only the vertices of the face (i.e. effectively introducing
two dimensional surface subdivision). In summary, the first

step of slow growing subdivision inserts vertices in cells and
merges along faces of the tier 0 mesh.

(a) (b)

Figure 2. Vertex insertion and subdivision of
tier 1 cells. (a) A vertex (indicated by a ◦)
is inserted in a tier 1 cell. (b) The vertex is
connected to each original vertex of the tier 1
cell, creating a set of pyramids. Two pyramids
sharing an edge of the tier 0 mesh are shown.

The second step of slow growing refinement, from tier 1
cells to tier 2 cells begins by introducing vertices inside tier
1 cells as shown in figure 2a. Each vertex is connected to
the vertices of the tier 1 cell to create a new set of pyramids.
Note that the newly inserted vertex is associated with a face
of a tier 0 cell. It is not constrained to lie on this face unless
that face was marked as a feature.

(a) (b) (c)

Figure 3. Creating tier 2 cells at edges of tier
0. (a) Tier 1 cells sharing a tier 0 edge. (b)
Subdivision of tier 1 cells into pairs of pyra-
mids sharing the tier 0 edge. (c) Creation of a
tier 2 cell by merging the pyramids about the
shared tier 0 edge.

Figure 3 depicts the merging operation that generates tier
2 cells. All newly created pyramids that share an edge
of the tier 0 mesh are merged along that common edge,
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and the common edge is removed from the mesh. Edges
can be tagged as being features, causing them to stay in
the mesh and prohibit the adjacent pyramids from being
merged. Edge features constrain subdivision to one dimen-
sion. In summary, the second step of slow growing subdi-
vision inserts vertices corresponding to faces of the tier 0
mesh, and merges along edges of the tier 0 mesh.

(a) (b) (c)

Figure 4. Creation of a tier 3 cell (equivalent
to tier 0 at level �+ 1). (a) Tier 0 cell. (b) Tier
3 cell shown in gray. (c) Tier 3 cell showing
all edges created in the subdivision process
from tier 0 to tier 3, which are removed during
the merge operations of tiers 1..3.

Figure 4 shows the final step of the slow growing refine-
ment. Vertices are inserted into tier 2 cells (corresponding
to edges of the tier 0 mesh), and pyramids constructed by
connecting these vertices to the vertices of the tier 2 cells.
All cells sharing a vertex of the tier 0 mesh are merged, and
all edges present in the tier 1 and tier 2 cells are deleted. Af-
ter the last step of subdivision the connectivity of the mesh
corresponds to the connectivity that would be obtained by
generalizing Catmull-Clark subdivision to the tier 0 cells.

3.2 Vertex Positioning and Smoothing

All vertices are vector valued, and may contain addi-
tional components representing physical quantities associ-
ated with the vertices (e.g. pressure or temperature). A tier
k vertex will be denoted by v(k). Vertices inserted into cell

cell centers are denoted by v(k)
C . Given a cell C of tier k with

n vertices v(k)
0 ..v(k)

n−1, a tier k +1 vertex v(k+1)
C is inserted at

the centroid of C:

v(k+1)
C =

1
n

n−1

∑
i=0

v(k)
i (1)

After connectivity is updated according to the description in
section 3.1 the tier k vertices of the original set of cells are
smoothed according to

v(k+1) = αv(k) +
1−α

m ∑
∀v∈E(v(k+1))

v (2)

where E(v(k+1)) is the set of vertices edge-connected to
v(k+1) in the tier k + 1 mesh and m is the total number of
such vertices. E(v(k+1)) includes both tier k vertices and
new tier k +1 vertices inserted according to equation (1).

4 Wavelet Transforms

A theoretical framework for constructing stable wavelets
on the multi-tier refinement structure of the slow growing
subdivision is not currently available. In contrast to surface
subdivision methods, many configurations can occur at ex-
traordinary vertices in volume meshes which make a spec-
tral analysis of scaling functions difficult. Thus, in the next
sections two wavelet transforms are presented and empirical
results are presented with respect to their stability. The two
methods are inspired by the lifting technique of Sweldons
[15].

Wavelet decomposition transforms a fine scale subdivi-
sion volume to a coarse scale base mesh with all finer level
vertices replaced by wavelet coefficients. Wavelet recon-
struction reverses this process, reconstructing the fine scale
subdivision volume.

For all tiers the decomposition is accomplished by re-
placing some tier k + 1 vertices with wavelet coefficients
and removing the tier k +1 cells incident on those vertices,
producing tier 0 cells. In the following sections, the vertices

removed by decomposition are denoted by v(k+1)
C since they

are tier k +1 vertices, but are associated with the centers of
tier k cells. These vertices are replaced with wavelet coef-
ficients δ(k). Thus, reconstruction of tier k + 1 is accom-
plished using tier k vertices v(k) and tier k wavelet coeffi-
cients δ(k).

4.1 Slow Growing Subdivision (SGS) Wavelets

(a) (b) (c)

Figure 5. SGS wavelet decomposition for a set
of six tier 1 cells with vertices at the corners
labeled v0

(1)..v7
(1) and a center vertex vC

(1).
(a) Smoothing of vi

(1) vertices by edge neigh-
bors. (b) Computation of centroid of vertices
vi

(1). (c) The tier 0 cell, with wavelet δ(0) given
by the difference of the centroid and vC

(1).
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Figure 5 shows the SGS wavelet decomposition lifting
steps that take a mesh from tier 1 to tier 0. In general, the
lifting steps are given by:

v(k) =
1
α

v(k+1) − 1−α
mα ∑

∀v∈E(v(k+1))

v (3)

δ(k) = v(k+1)
C − 1

n

n−1

∑
i=0

v(k)
i (4)

with E(v(k+1)) returning the edge of neighbors of a tier k+1
vertex with respect to the connectivity of tier k + 1. The
parameter α of the vertex smoothing operation controls the
shape and stability of the wavelet basis functions.

The reconstruction steps are obtained by inverting the
decomposition steps and reversing their order. Note that ex-
cept for the appearance of the wavelet coefficient δ(k), these
steps are the same as the SGS subdivision rules presented in
the previous section.

v(k+1)
C =

1
n

n−1

∑
i=0

v(k)
i +δ(k) (5)

v(k+1) = αv(k) +
1−α

m ∑
∀v∈E(v(k+1))

v (6)

where v(k)
0 ..v(k)

n−1 are the vertices of a tier k cell C and δ(k) is
a wavelet coefficient which is vector-valued like the vertices
of the subdivision. E(v(k+1)) is the set of edge neighbors of
v(k) in the tier k + 1 mesh. The smoothing rule for tier k
vertices (6) remains unchanged.

4.2 Generalized Linear B-Spline Wavelets

Lifted linear B-spline wavelets can be generalized to the
slow growing refinement rules. The linear B-spline trans-
form computes the wavelet coefficient first, by predicting
cell vertices by centroids, and encoding the difference be-
tween the centroids and the actual cell vertex positions as
wavelet coefficients. In contrast to the SGS smoothing
rules, the original vertices are smoothed only by the wavelet
coefficients.

Figure 6 depicts linear B-spline wavelet decomposition
from tier 1 to tier 0 which generates one wavelet coefficient,
removes its associated vertex and results in a single tier 0
cell.

δ(k) = v(k+1)
C − 1

n

n−1

∑
i=0

v(k)
i (7)

v(k) = v(k+1) − 1
m ∑

∀δ∈W(v(k+1))

δ (8)

where n is the number of vertices of cell C, W(v(k+1)) is
the set of newly computed wavelet coefficients derived from

Figure 6. Linear B-spline decomposition of
six tier 1 cells with vertices at the corners de-
noted v0

(1)..v7
(1) and a center vertex vC

(1). (a)
Computation of centroid of vertices vi

(1). (b)
A wavelet coefficient δ(0) given by the differ-
ence of the centroid and vC

(1). (c) Smoothing
of vi

(1) vertices by wavelet coefficients of for-
mer edge neighbors.

cell vertices v(k+1)
C edge connected to v(k+1) and m is the

number of such vertices. The reconstruction is computed as
follows:

v(k+1) = v(k) +
1
m ∑

∀δ∈W(v(k+1))

δ (9)

v(k+1)
C = δ(k) +

1
n

n−1

∑
i=0

v(k)
i (10)

5 Progressive Compression

A progressive bit stream is constructed from a hierarchy
of subdivision wavelets. The resulting stream is optimized
for coarse to fine reconstruction operations. Said and Perl-
man [13] describe an image coder based on set partitioning
in hierarchical trees (SPIHT) that is generalized in this pa-
per to the slow growing subdivision refinement structure.
The wavelet coefficients in this paper are vector quantities.
Each component is quantized to an integer of a certain num-
ber of bits before being passed to the SPIHT coder.

5.1 SPIHT Coder

The SPIHT algorithm, like the zerotree algorithm [14],
exploits the decay behavior of wavelet coefficients as one
proceeds from coarse to fine spatial scales by operating on
trees of wavelet coefficients. In general, a parent-child rela-
tionship is desired such that the parent coefficient predicts
the behavior of its descendants. There is no theoretical
framework that can be used to define such a relationship
for subdivision wavelets, but intuitively a definition based
on the spatial relationships of parent and child analogous to
the trees used in the image coding literature can be applied.

The SPIHT algorithm encodes each bit plane separately,
from most significant bit to least significant. A predefined
traversal order is defined for both the encoder and decoder,
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and trees of zeros are encoded efficiently by encoding a sin-
gle bit for the root coefficient. In this way, compression is
achieved if the coarse wavelet coefficients are indicative of
the behavior of their descendants. Sign bits are encoded into
a separate stream.

5.2 Wavelet Coefficient Trees

The parent child relationships are defined with respect to
the slow growing refinement structure. These relationships
are presented with respect to the tier 0 mesh, since each tier
(1 through 3) inserts vertices that can be associated with
elements of decreasing dimension in the tier 0 mesh (cells,
faces, and edges). All coefficient trees are rooted in mesh
elements of the base mesh.

Tier 2 vertices are associated with edge centers of the tier
0 mesh. A coarse wavelet coefficient at tier 3 has only tier
3 descendants that are all associated with that edge.

Tier 1 vertices are associated with face centers of the tier
0 mesh. A tier 2 wavelet at level � has two sets of child co-
efficients at level �+ 1. First, the tier 0 face on which the
coefficient lives will be divided into a set of faces, produc-
ing one child wavelet for each face. Second, in creating that
set of faces, edges will be introduced into the tier 0 face,
and each edge will produce one child wavelet.

Tier 0 wavelets are associated with tier 0 cell centers.
There are three sets of children for a tier 0 wavelet at level
�. First, one wavelet is produced for each subcell that the
tier c cell is divided into at tier �+ 1. Second, the faces in-
serted to produce those subcells each produce one wavelet
coefficient. Finally, one wavelet is introduced for each in-
ternal edge required to subdivide the tier 0 cell.

6 Results

Performance results are presented for two data sets, a
synthetic data set and a simulation data set. The vertex
coordinates, including scalar field values, were normalized
before quantization. In each case, the root mean squared
error was computed for the vertices of the mesh using the
magnitudes of the vectors from each vertex of the origi-
nal mesh to the corresponding vertex in the decompressed
mesh. For progressive reconstructions, a set number of bits
were decompressed, then the fine-scale mesh was recon-
structed from these bits.

First, performance results are presented for a noisy ball
mesh. The mesh was created by starting with a cube and ap-
plying the slow growing subdivision algorithm to obtain a
nearly spherical volumetric mesh. Twelve SGS refinements
were used from level 0 to level 4, creating 4913 vertices.
Random perturbations were applied to these vertices. Each
coordinate of each vertex was quantized to 32 bits, result-
ing in 471648 bits before compression. Figure 6 shows rate
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Figure 7. Rate Distortion Curves for the per-
turbed ball.

distortion curves for both slow growing subdivision and lin-
ear B-spline subdivision using the SGS refinement structure
for a volumetric ball mesh. SGS compression resulted in
429344 and 454080 bits for α = 0.7 and α = 0.9 respec-
tively. The linear B-spline transform resulted in 454848
bits. For the slow growing algorithm, α values less than 0.7
resulted in less stable wavelets and decreased compression
efficiency. The relatively low compression rates are due to
the large perturbations introduced into the mesh, reducing
the effectiveness of the SPIHT coder by reducing the corre-
lations between parent and child wavelet coefficients.

Figure 8 shows the external faces of the mesh for three
different progressive reconstructions of the data. The su-
perior performance of the B-spline wavelets can be seen at
small numbers of bits.

Figure 9 shows the results of applying the wavelet trans-
form to the final cycle of a simulation of laser indirect-drive
fusion. The simulation models one quarter of the system
and computes the compression of a capsule of fuel inside a
hohlraum (a cylindrical container). Laser beams enter the
open ends of the hohlraum, striking the inside surface and
releasing a uniform bath of radiation that acts on the capsule
and causes compression. In the final step shown in figure 9,
the internal walls of the hohlraum have been heated and ma-
terial is ablating from the surface into the cavity inside the
hohlraum.

Some domains of the mesh have been eliminated. The
opening of the hohlraum is facing the viewer. The capsule
is the red spherical area at the rear of the hohlraum. The
pseudo-colored field is the material temperature averaged to
each node of the subdivision volume. The lower resolution
approximations are shown for levels 1 and 2, as well as the
full resolution subdivision volume.
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α = 0.7

1000 Bits 15000 Bits 100000 Bits Original

α = 0.9

Figure 8. Wavelet reconstructions of a perturbed volumetric (solid) sphere. The top and middle rows
show slow growing subdivision with α = 0.7 and α = 0.9 respectively. The bottom row shows linear
B-spline wavelet reconstruction.

Subdivision wavelet transforms require as input a fine
scale mesh with subdivision connectivity. Since most finite
element meshes are domain decomposed for parallel com-
putation, a remapping must be applied that results in a sub-
division volume representing the fields defined on the finite
element grid.

The simulation data was decomposed into 32 domains.
Each domain contained a regularly connected set of hexahe-
dra with arbitrary vertex locations. A base mesh hexahedron
was constructed for each domain, and subdivided 5 times.
The fine scale vertex positions were then mapped into the
original finite element data and the wavelet transforms were
applied. The data set used as input to the wavelet transform
contained 134176 vertices.

Figure 6 shows rate-distortion curves for the same data
set. The original mesh exhibited great differences in the size

of the cells. For example, the hohlraum itself was made up
of many layers of thin hexahedral cells, while the empty
space between the hohlraum and the capsule was meshed
more coarsely. At low numbers of bits, errors in vertex loca-
tions caused the mesh to interpenetrate, especially for unsta-
ble transforms like the slow growing subdivision wavelets
with α < 0.7.

7 Conclusion

A complete compression system was implemented on
top of the slow growing subdivision algorithm. A slow
growing wavelet transform and a generalized B-spline
wavelet transform were tested in this system on both syn-
thetic and simulation data. The slow growing wavelets were
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α = 0.9

Level 1 Level 2 Original

B-
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Level 1 Level 2 Original

Figure 9. Wavelet reconstructions of an inertial confinement simulation from a view 45◦ off axis. The
top rows show slow growing subdivision with α = 0.9. The bottom row shows linear B-spline wavelet
reconstruction.

unstable for some settings of the smoothing parameter α.
The B-spline transform seemed well behaved.

The system was not tested on base meshes with extraor-
dinary vertices, where special subdivision rules may im-
prove convergence and smoothness. The SGS structure cre-
ates vertices with valence other than six in tiers 1 and 2
and the wavelet transform is defined independent of the va-
lence of vertices. However, producing a base mesh from
an arbitrary finite element mesh is still an open problem,
so the natural domain decomposition of the scientific data
was used, resulting in hexahedral base mesh elements. In
the case of extraordinary vertices it is probably necessary to
solve on the fly for each irregularly connected vertex. For-
mally proving the stability of subdivision wavelets on volu-
metric meshes is very difficult due to the large numbers of
possible configurations.

The back end compression system does not achieve ap-
preciable gains on the bit streams output by the SPIHT

coder. Two areas of improvement are possible. In the sys-
tem presented in this paper, two bit streams are produced
by the SPIHT coder, the sign bits and all other bits. Per-
formance could be improved by further separating the bits
into separate streams for the vertex coordinates values and
the insignificant coefficients. Secondly, the wavelets them-
selves can be encoded using a magnitude direction form,
under the assumption that the magnitudes will be better pre-
dicted by parent wavelet coefficients than the directions.

A progressive representation is not well adapted to local
refinement and view-dependent rendering operations. Pas-
cucci et. al. [12] have demonstrated a system that pro-
vides a globally progressive bit stream, but preserves local-
ity within each level of resolution. A significant research
goal is to extend those ideas to the surface and volumetric
subdivision settings.
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